Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Clin Immunol ; 44(3): 76, 2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38451381

RESUMEN

A20, encoded by TNFAIP3, is a critical negative regulator of immune activation. A20 is a ubiquitin editing enzyme with multiple domains, each of which mediates or stabilizes a key ubiquitin modification. A20 targets diverse proteins that are involved in pleiotropic immunologic pathways. The complexity of A20-mediated immunomodulation is illustrated by the varied effects of A20 deletion in different cell types and disease models. Clinically, the importance of A20 is highlighted by its extensive associations with human disease. A20 germline variants are associated with a wide range of inflammatory diseases, while somatic mutations promote development of B cell lymphomas. More recently, the discovery of A20 haploinsufficiency (HA20) has provided real world evidence for the role of A20 in immune cell function. Originally described as an autosomal dominant form of Behcet's disease, HA20 is now considered a complex inborn error of immunity with a broad spectrum of immunologic and clinical phenotypes.


Asunto(s)
Síndrome de Behçet , Proteína 3 Inducida por el Factor de Necrosis Tumoral alfa , Humanos , Mutación de Línea Germinal , Haploinsuficiencia , Inmunomodulación , Ubiquitinas , Proteína 3 Inducida por el Factor de Necrosis Tumoral alfa/química , Proteína 3 Inducida por el Factor de Necrosis Tumoral alfa/genética , Proteína 3 Inducida por el Factor de Necrosis Tumoral alfa/metabolismo
2.
Med Oncol ; 39(12): 251, 2022 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-36224472

RESUMEN

Over the last few decades, the number of people diagnosed with cancer has increased dramatically every year, making it a major cause of mortality today. Colon cancer is the third most common cancer worldwide, and the second in mortality rate. Current cancer treatment fails to treat colon cancer completely due to the remains of Cancer Stem Cells (CSCs). Morin flavonoid present in figs (Ficus carica) and other plant sources, was found to have an anti-proliferative effect on the colon cancer model and cell line, but it is not studied for its effect on the colon CSCs. In this study, we have tested the potency of morin to inhibit CSCs. We found that morin has significantly reduced colon cancer cell proliferation, colony formation, migration, and colonospheroid formation in a dose-dependent manner. Pumilio-1 (PUM1) has been shown to play an important role in colon CSCs maintenance. We found that morin has a good binding affinity with PUM1 protein with one hydrophobic and two hydrogen bond interactions. Further, the immunofluorescence results have also shown a reduction in PUM1 expression in colon cancer cell lines after morin treatment. CD133 is overexpressed in colon CSCs and morin treatment has reduced the CD133 expression in HCT116 and CT26 colon cancer cell lines. Our research outcome has explored the anti-cancer stem cell potency of morin via targeting the PUM1 protein and further reducing the colon spheroids formation and reducing the CD133 expression in colon cancer cells.


Asunto(s)
Neoplasias del Colon , Células Madre Neoplásicas , Proliferación Celular , Neoplasias del Colon/tratamiento farmacológico , Neoplasias del Colon/metabolismo , Flavonas , Flavonoides/farmacología , Humanos , Células Madre Neoplásicas/metabolismo , Proteínas de Unión al ARN/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...